

Wildland Fire Risk Mitigation Plan

A Touchstone Energy® Cooperative

November 2025

Table of Contents

1. Introduction	3
A. Purpose and Scope	3
B. Approvals	3
C. Regulatory Context	3
D. PRECorp's Commitment to Wildfire Prevention	3
2. Utility Profile & Wildfire Mitigation History	4-5
A. Service Area and Infrastructure Overview	4-5
B. Historic Wildfire Incident Lessons Learned	4-5
3. Wildfire Risk Assessment	6-7
A. Infrastructure Risk Assessment	6-7
B. WYWRAP Overview	6-7
C. PRECorp Risk Assessment and Risk Identification	6-7
4. Asset Management	8-9
A. System Inspection and Maintenance (Repair)	8-9
B. System Inspection Cycles and Methodology	8-9
C. Aerial Inspection (UAS)	8-9
D. Maintenance Plan Repair and Prioritization	8-9
E. Vegetation Management	8-9
5. System Hardening	10-11
A. Construction Work Plans and Engineering Standards	10-11
B. System Protection	10-11
A. SCADA (Remote Control)	10-11
B. Wildlife Mitigation - APP Historical Development	10-11
C. APP Effectiveness and Evolution	10-11
D. Hand-Wheel Bushing Cover Remediation Program	10-11
E. Electrical Connectors	10-11
F. Evaluation & Potential Implementation of Other System Hardening Activities	10-11
6. Operational Response	12-13
A. Wildfire Season	12-13
B. Red Flag Days (Fire Weather)	12-13
C. Fire Incident Response	12-13
7. Proactive Power Shutoff (Public Safety Power Shutoff (PSPS))	14-15
8. Coordination with Wildfire Response Agencies	15
9. Public Communication	16
10. Implementation, Financial Considerations, and Annual Reporting	16-17
A. Implementation	16-17
B. Wildfire Prevention Financial Considerations	16-17
C. Wildfire Liability Financial Considerations	16-17
D. Annual Reporting	16-17
11. Contact for Further Information	17

1. Introduction

A. Purpose and Scope

Powder River Energy Corporation's (PRECorp) Wildland Fire Risk Mitigation Plan (WFRMP) outlines the cooperative's approach to mitigating the risk and impact of wildfires.

This document is a summary of PRECorp's internal practices, programs, and commitments and is intended for general informational purposes.

B. Approvals

This WFRMP has been approved by PRECorp's Board of Directors and Executive Staff.

C. Regulatory Context

This plan complies with Wyoming House Bill 0192 (HB0192) regarding wildfire risk mitigation planning and liability. PRECorp is a not-for-profit electric cooperative, owned by the membership we serve. PRECorp upholds the seven cooperative principles, including concern for community, and embraces wildfire mitigation as a responsibility shared with PRECorp's members and community partners.

D. PRECorp's Commitment to Wildfire Prevention

PRECorp's commitment to wildfire prevention is demonstrated by PRECorp's historic wildfire prevention activities. These activities are outlined in paragraph 2b of this document and include implementation of a WFRMP three years prior to HB0192's enactment.

PRECorp reduces ignition hazards through a three-tiered approach as summarized below. This document explains these three tiers in more detail.

1. Asset management. PRECorp inspects system facilities at regular intervals and makes timely repairs.
2. System hardening. PRECorp is investing in system improvements that reduce wildfire risk. These are often capital-intensive, long-term projects and primarily target PRECorp's overhead distribution lines.
3. Operational Response. When weather conditions dictate, and fire risk is elevated, PRECorp alters system operations to reduce the risk of a wildfire ignition. Operational response includes planning for public safety power shut off (PSPS). These fire-weather procedures reduce ignition risk but can also lead to longer and more frequent power outages.

Meaningful progress in these three tiers relies on (1) PRECorp leadership's commitment to wildfire prevention, (2) empowerment of PRECorp's employees to act in fulfilling the plan, and (3) continued communication with and education of PRECorp's membership and other community stakeholders.

2. Utility Profile & Wildfire Mitigation History

A. Service Area and Infrastructure Overview

PRECorp serves over 12,000 members across the five counties of northeastern Wyoming and a portion of southern Montana as depicted in Figure 1. PRECorp's infrastructure includes over 11,000 miles of power line, 190,000 wood poles, and dozens of power substations. PRECorp's power line is predominately overhead distribution (25kV and under) but also comprises underground distribution, sub-transmission (34.5kV), high voltage distribution (HVD, 69kV), and transmission (230kV) line.

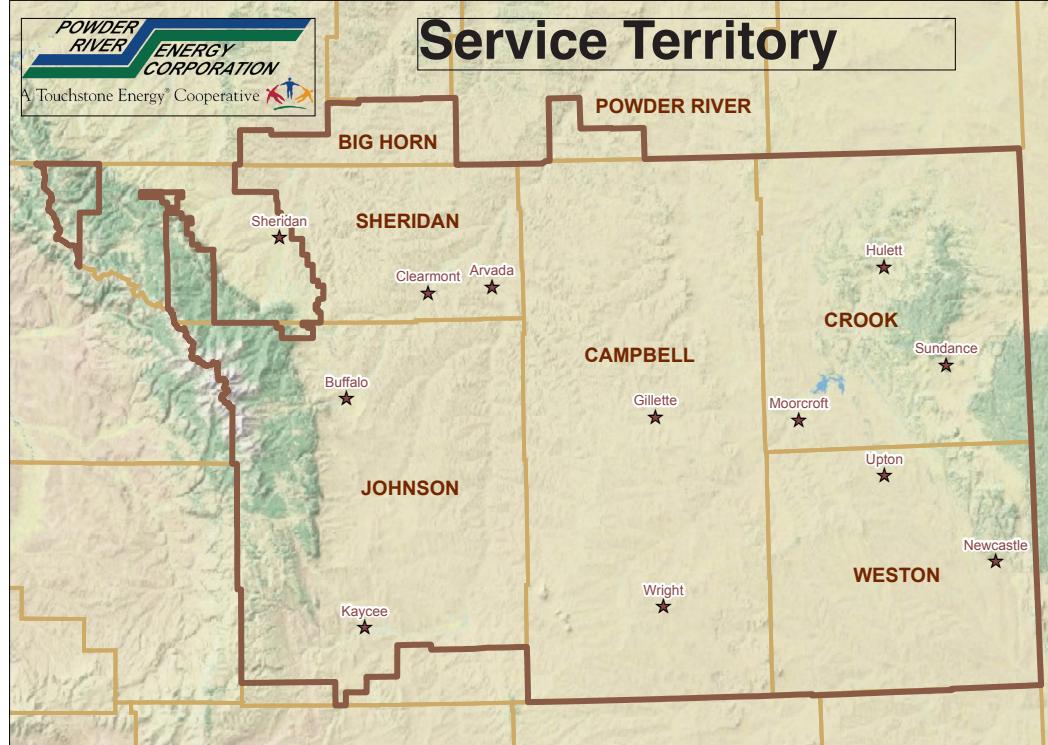


Figure 1. PRECorp Service Territory Map

PRECorp's facilities traverse diverse terrain with varying wildfire risk profiles. Many of PRECorp's power lines cross pasture, range, and prairie in the Powder River Basin where dry grass readily ignites and wildfire may spread rapidly, at a moderate intensity. Forested sections of PRECorp's territory include portions of the Bighorn Mountains, the western Black Hills, and timbered areas in the vicinity of the communities of Hulett, Sundance, and Pine Haven. Generally speaking, the forested areas are more difficult to ignite than grassland but have the potential for more intense wildfires.

Item	Quantity
Meters Served	27,000
Distribution Substations	57
Bulk Supply Substations	11
Miles of sub-transmission, HVD and transmission	715
Miles of Underground Distribution	651
Miles of Overhead Distribution	10,078
% Overhead Distribution non-forested (range, pasture, ag, etc.) (estimated)	91%
% Overhead Distribution forested (estimated)	2%
% Overhead Distribution developed (estimated)	7%

Figure 2. PRECorp Infrastructure Statistics (Source for land classification is the National Land Cover Database 2021)

B. Historic Wildfire Incident Lessons Learned

PRECorp developed and approved its first "Wildland Fire Risk Mitigation Plan (WFRMP)" in 2021 and implemented it beginning in 2022. The WFRMP was developed as part of PRECorp's commitment to wildfire prevention prior to a regulatory incentive to do so. Further demonstrating PRECorp's commitment, in addition to implementing new operational response procedures, in 2021 PRECorp embarked on three major initiatives as listed below, which are described in more detail later in this document.

- Unmanned Aerial System (UAS \ drone) Inspection (Asset Management) – system wide aerial pole inspection program
- Intelligent Vegetation Management System (IVMS) (Asset Management) – implementation of a satellite-image-based right-of-way management system
- System Protection Upgrades (System Hardening) – revamping PRECorp's approach to protecting and sectionализing the overhead distribution network.

Since 2016, PRECorp has recorded wildfire incidents when PRECorp's infrastructure was believed to be involved in a wildfire ignition. This includes ignitions initiated by mechanisms that are particularly challenging for power utilities to address such as lightning strikes, public vandalism, and equipment failure resulting from extreme weather (wind) in excess of design parameters. This wildfire incident data has helped shape the WFRMP.

Key lessons gained from past wildfire incidents are listed below.

- When PRECorp's equipment is involved in a wildfire ignition, it often involves interactions with wildlife or equipment failure. Wildlife interactions are often the result of birds or climbing animals contacting live parts. Equipment failures include broken poles, other broken line hardware and faulty electrical connections. Wind and extreme weather are often contributing factors to equipment failures. It is uncommon for vegetation (trees) to contact PRECorp's facilities and initiate a wildfire ignition.
- The number and extent of wildfires is weather dependent and may vary dramatically from year to year. Since 2016, when data collection began, 2024 was the most active fire year in PRECorp's history while 2023 was one of the least active.
- Although wildfires can occur in any month of the year, the typical peak wildfire season is from July through September.
- PRECorp's wildfire incident data (collected since 2016) indicates that PRECorp's underground distribution, sub-transmission (34.5kV), HVD (69kV), transmission (230kV), substation facilities, and personnel operations (equipment, vehicles, power tools) present a (very) low ignition risk.
- There is no record or memory of a public safety power shutoff (PSPS) being implemented at PRECorp as a means to reduce wildfire ignition risk.

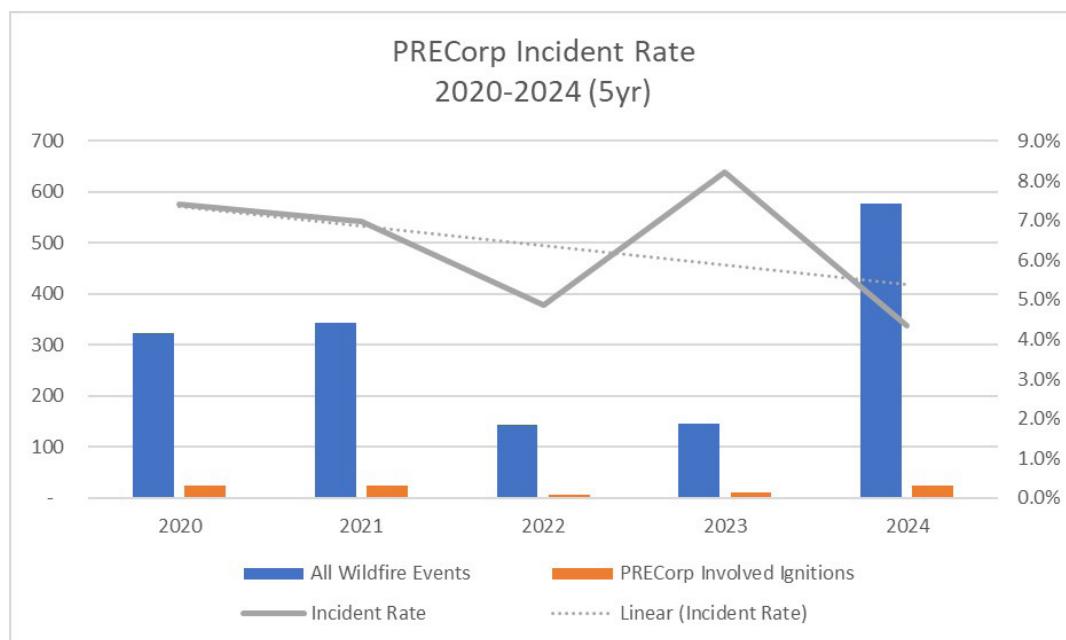


Figure 2 – PRECorp Historic Ignition Rate (Wyoming service territory only)

As a key indicator of PRECorp's wildfire mitigation activities, PRECorp tracks an "incident rate" comparing all reported wildfires in the five counties of northeast Wyoming with ignitions involving PRECorp facilities (PRECorp recorded incidents), depicted in Figure 2. Historically, PRECorp's facilities have been involved in 6% (five-year average 2020-2024) of all wildfire ignitions in northeast Wyoming.

Since implementing the WFRMP in 2022, PRECorp has enhanced its understanding of wildfire hazards through field experience, data review, and cooperation with

electric utility industry partners. This learning has informed several proactive measures, including revised vegetation management approaches, programs for satellite-based vegetation analysis, system protection setting adjustments during fire season, and unmanned aerial system (UAS or drone) inspection programs. PRECorp's wildfire mitigation efforts will continue to evolve as the electric utility industry adapts to this emerging area of focus.

3. Wildfire Risk Assessment

A. Infrastructure Risk Assessment

PRECorp has identified overhead distribution circuits (or line sections) with heightened wildfire risk using the following three inputs in the risk assessment process.

1. Historic incident data. This data indicates that wildfire ignition risk is very low for PRECorp's substations, underground distribution, transmission, high-voltage distribution facilities, and personnel activities. Wildfire prevention efforts are most effectively focused on overhead distribution line (below 34.5kV).
2. Local knowledge and experience of a geographic area's ignition potential, terrain, vegetation types, fire suppression difficulty, and proximity to infrastructure and important assets.

3. This dataset was created from updated national wildfire hazard datasets of annual burn probability and fire intensity generated by the USDA Forest Service, Rocky Mountain Research Station with the large fire simulation system. The national index creates a ranking of 0-5 that estimates the likelihood and intensity of a wildfire under normal weather conditions.

B. PRECorp Risk Assessment

PRECorp utilizes the USFS Wildfire Hazard Potential Layer for determining Heightened Risk of Wildfire within Service Territory (HRWST) along with other data sources in a multi-step analysis process as described below. The risk analysis is then corroborated with PRECorp's (1) historical incidents, and (2) local knowledge and experience.

1. Electrical infrastructure maps are overlaid with HRWST data layers to identify where PRECorp assets intersect with areas of elevated wildfire risk (see Figure 5).
2. Power line feeders are ranked based on the ratio of HRWST intersecting line spans to total feeder line spans.
3. PRECorp's (1) historical incidents and (2) local knowledge and experience are used as a basis to assign elevated wildfire risk to additional feeders and line sections that were not identified as such through the HRWST analysis.

This approach ensures that PRECorp's risk assessment is data driven. PRECorp's mitigation efforts can be focused on areas where risk reduction has the greatest benefit to PRECorp's members and communities.

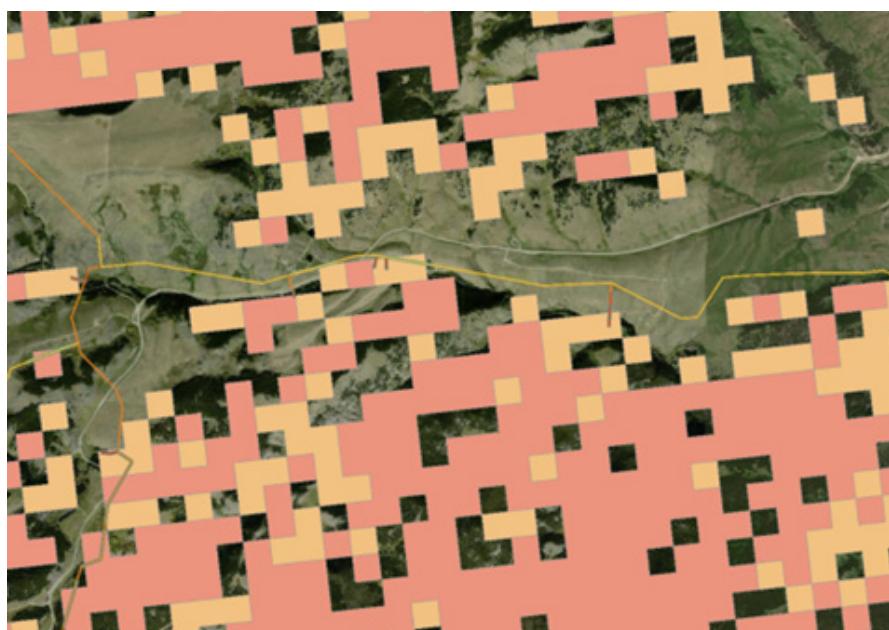


Figure 3. HRWST GIS information in vicinity of PRECorp's Mountain Mountain Line (Tap).

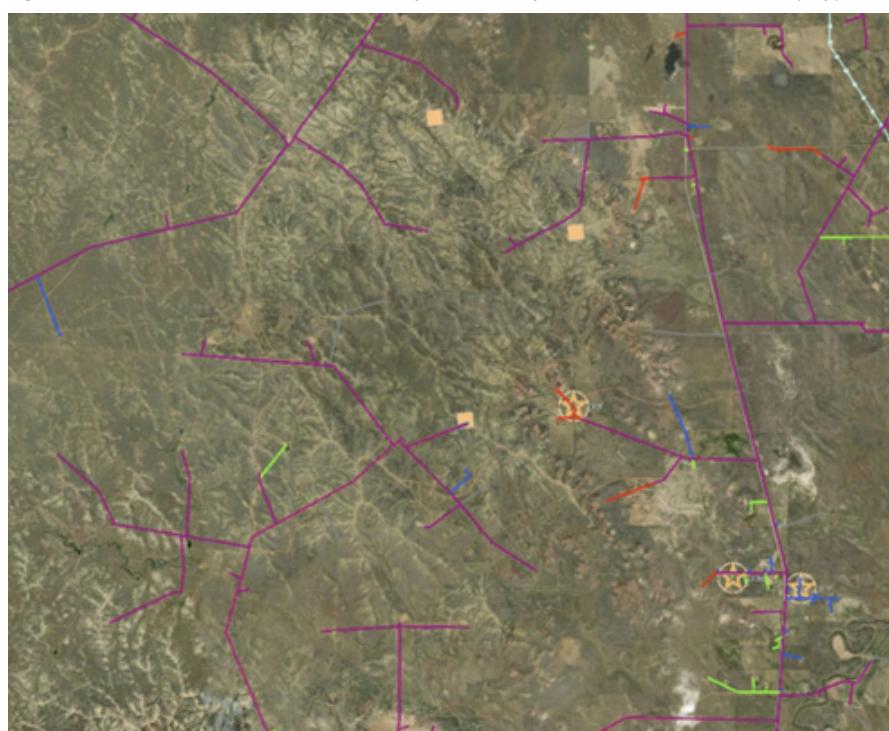


Figure 4. HRWST GIS Information in southern Campbell County. Lines in this area require minimal risk mitigation.

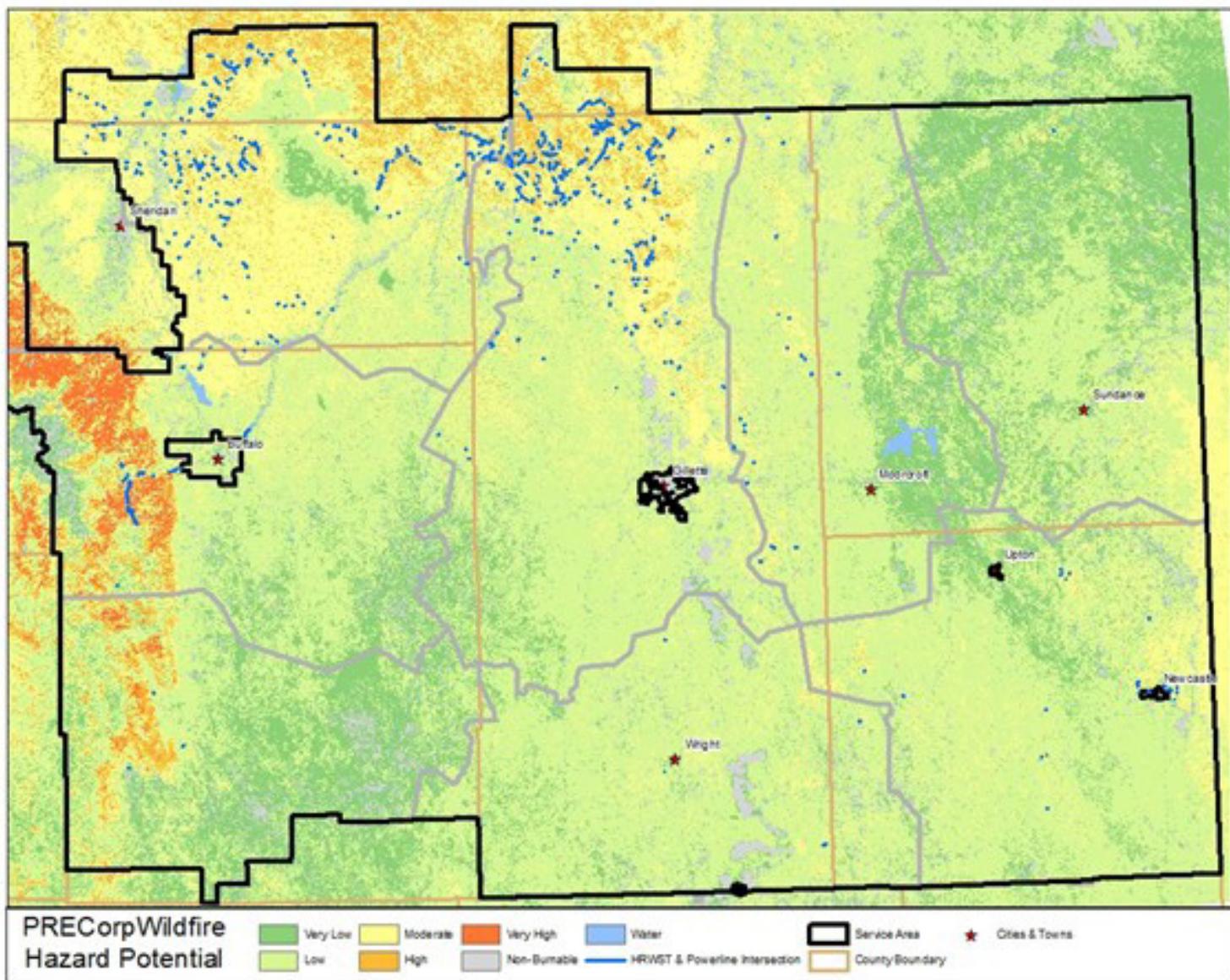


Figure 5. PRECorp Assets that Intersect with High or Very High HRWST Layers

The overhead distribution circuits (or line sections) in areas with heightened wildfire risk are given additional consideration and priority when applying the three-tiered (Asset Management, System Hardening, and Operational Response) wildfire mitigation activities. PRECorp evaluates all system infrastructure located in heightened wildfire risk areas and applies the optimal combination of risk mitigation tools for each line section or feeder in order to reduce the risk of powerline involved ignitions.

For example, the power line shown in figure 3, above, may benefit from specialized Operational Response procedures, additional System Hardening, and increased Asset Management to reduce ignition risk. The ignition risk associated with line shown in figure 4 may be addressed by increased frequency of Asset Management activities on the short section of lines in elevated risk areas. The three-tiered approach is further detailed later in this plan.

PRECorp's long-term approach is to reduce ignition risk across the system, while focusing and prioritizing mitigation efforts in elevated risk areas. This approach to wildfire risk reduction will have the greatest benefit to PRECorp's members and communities.

The PRECorp wildfire risk assessment may be revised periodically, and the facilities identified in Figure 5 may change as warranted.

4. Asset Management

Asset management (inspection and maintenance) is an important aspect of PRECorp's business, benefiting PRECorp's membership by improving public safety, extending asset life, and reducing power outages. Because faulted power lines can ignite wildfires, reducing the number of faults through proactive maintenance is a cornerstone of PRECorp's wildfire prevention strategy.

A. System Inspection and Maintenance (Repair)

PRECorp implemented a rigorous system-wide Electrical System Maintenance Plan in 2018. In addition to causing power outages, faulted power lines can ignite wildfires by contributing heat energy and fuel (burning materials) to local fuels (grass, brush, wood). Reducing the number of faults through proactive maintenance reduces wildfire ignition risk.

Pole and equipment failure is a leading contributor to wildfire ignitions involving PRECorp's overhead distribution system. System maintenance can identify and address deficiencies before power line equipment (poles, line hardware, and electrical connections) fail.

PRECorp's Electrical System Maintenance Plan follows a systematic, geographically based approach designed to inspect PRECorp's entire system on regular cycles. This structured maintenance approach has measurably improved system reliability and reduced wildfire ignition risk.

B. Joint Use Facilities

PRECorp's inspection work includes identifying maintenance\repair items associated with joint use facilities. Joint use facilities are communication (TV, phone, internet) cables and non-PRECorp electric wires co-located on PRECorp's poles. PRECorp completes necessary maintenance and/or repairs to joint use facilities for which it is responsible. For joint use facilities for which it is not responsible, PRECorp notifies the joint use facility owner of necessary repairs. In addition to inspecting joint use facilities and either making necessary repairs or communicating the same, PRECorp inspects and maintains PRECorp facilities located on poles that are owned by other utilities.

C. System Inspection Cycles and Methodology

PRECorp's maintenance plan employs a multi-tiered inspection approach:

1. *Twelve-Year Pole Inspection and Testing Program* – Each of the eight PRECorp lineman service areas are divided into twelve geographical inspection areas based on circuit geometry, terrain, and other factors. Each year, approximately one-twelfth of PRECorp's system (approximately 16,000 poles) receives detailed inspection and testing. This inspection includes:
 - Visual assessment of above-ground pole conditions
 - Below-ground testing for internal and external decay using IML Resistograph equipment for poles older than 15 years that are planned to be in operation prior to the next cycle
 - Infrared (thermal) inspection of electrical connections
 - Assessment of wildlife protection measures
 - Documentation of joint-use attachments
2. *Three-Year Line Patrol Cycle* - In addition to the detailed pole inspection program, PRECorp conducts less-detailed visual line patrols on three line-inspection areas each year. This ensures that all overhead distribution infrastructure is visually assessed at least once every three years when combined with the pole inspection process. Line patrols focus on identifying:
 - Obvious equipment deficiencies
 - Vegetation clearance issues
 - Electrical clearance concerns
 - Joint attachment (phone, cable, TV utility) issues
3. *Transmission Line Inspection* - PRECorp's high-voltage distribution (69kV) and transmission (230kV) lines are visually inspected annually, usually via helicopter, and follow the same twelve-year detailed inspection cycle as PRECorp's distribution system.

D. Aerial Inspection (UAS)

In 2024, PRECorp successfully completed a comprehensive, three-year Unmanned Aerial System (UAS) inspection program, which evaluated over 190,000 power poles. This inspection encompassed both transmission and distribution assets, significantly enhancing PRECorp's traditional distribution ground line inspections and aerial transmission line assessments typically conducted via helicopter.

The findings from the UAS program were prioritized based on the severity of identified issues, and corrective actions were implemented in accordance with this prioritization. Consultants meticulously reviewed each pole location for defects, and any deficiencies identified were subsequently assessed internally by PRECorp's Engineering staff to determine the most appropriate course of action.

Actional findings included immediate repairs for 66 pole locations, and over 5,000 poles were found to have high priority issues. Additionally, there were 19,000 locations that require attention due to lower priority concerns. PRECorp is addressing these lower priority concerns on normal maintenance schedules.

PRECorp continues to evaluate the UAS inspection program and has not yet determined an optimal UAS inspection cycle. In 2025 and 2026, PRECorp will inspect a subset of distribution poles via UAS to help identify an optimal UAS inspection cycle.

PRECorp's high-voltage distribution (69kV) and transmission (230kV) lines receive annual aerial inspections via helicopter.

E. Maintenance Plan Repair and Prioritization

Conditions identified during inspections are categorized based on their potential to cause a fault event and risk of wildfire ignition:

- Critical Conditions ("P10" UAS) - Issues posing imminent danger or likely to cause a fault are addressed immediately.
- Moderate Risk Conditions ("P20" UAS) – Issues that may be addressed within three months.
- Priority A Rejects - Poles with severe structural deterioration are replaced within 90 days.
- Priority B Rejects - Poles with moderate deterioration are scheduled for repair or replacement by the end of the year following identification.
- Other Maintenance Items ("P30" and "P40" UAS) - Non-critical issues are scheduled for repair during normal maintenance cycles.

The structured approach to system inspection and maintenance mitigates wildfire risk by proactively identifying and addressing conditions that could lead to equipment failures.

F. Vegetation Management

Vegetation contributes to wildfire risk in two ways. (1) Faults may occur when vegetation, usually trees and branches contact overhead power lines. Historically, very few ignitions have resulted from vegetation contacting PRECorp's system. (2) When an ignition does occur, the quantity, type, and condition of vegetation in the immediate vicinity of the power line can contribute to the spread and intensity of fire. Vegetation management addresses both of these factors.

Vegetation management activities (trimming, clearing, and danger tree removal) are performed according to the conditions of PRECorp's permit or easement and in coordination with landowners (or public land management agency) as required.

In 2022, PRECorp began a five-year program obtaining baseline data to implement an intelligent vegetation management system (IVMS). IVMS utilizes sophisticated satellite imagery to measure vegetation encroachment and identify potential hazard trees. In 2025 about 2,400 miles of line will be scanned using satellite imagery.

IVMS provides an alternative vegetation management approach to traditional cycle based trimming programs. With IVMS, trimming\clearing work is assigned based on measured encroachment and vegetation health, whereas cycle-based programs primarily rely on time (years) since the last trimming. IVMS is well suited to PRECorp's vast service territory and highly variable right-of-way conditions. Satellite imagery (scans) will be updated in subsequent years, after trimming work has been completed, to gauge trimming effectiveness. The advantages of IVMS over a cycle trim program include improved detection of emergent situations such as; (1) forest die-off (insect infestation) events, (2) danger trees outside of the right of way, and (3) newly established, fast-growing vegetation.

The implementation of IVMS has resulted in PRECorp budget increases for vegetation management in 2024 and 2025 compared to previous years.

5. System Hardening

PRECorp is investing in system improvements to reduce wildfire ignition risk. These improvements should also improve PRECorp's reliability. PRECorp's key system hardening activities are described below.

A. Construction Work Plans and Engineering Standards

System hardening and other capital construction projects are planned and administered through PRECorp's Long Range Plan, Construction Work Plan, and Annual Capital Budget. These projects are then constructed according to PRECorp's engineering standards. Project plans and engineering standards are developed considering many factors including economics, system performance impacts, budget constraints, reliability, safety, regulatory requirements and impacts to electric rates.

B. System Protection

Electric utilities use a complex network of system protective devices (fuses and circuit breakers) to de-energize faulted and overloaded electrical facilities. PRECorp has established a multi-year capital improvement program to upgrade and add protective devices across PRECorp's overhead distribution network. This includes replacing mechanical devices (fuses and oil-filled reclosers) with electronically controlled devices when feasible. Electronic devices are more precisely controlled than mechanical alternatives and are more easily integrated into remote-controlled networks.

System protection improvements are expected to reduce wildfire ignition risk by reducing fault-energy (heat) that is available to ignite fuels (grass, brush, trees) located near a faulted powerline. System protection improvements will improve reliability in two ways. (1) The length of line protected by any one device (fuse or circuit breaker) will be reduced. Shorter protected line segments can mean fewer customers are off during a power outage and personnel have a smaller line footprint to patrol in search of an underlying problem. (2) The network of protection devices (fuses and circuit breakers) will also work better together. This is known as device "coordination" and improvements in coordination lead to improved system reliability.

A. SCADA (Remote Control)

Electric utilities use SCADA (supervisory control, alarm, and data acquisition) to remotely control and monitor the electric network. PRECorp's existing SCADA system is capable of monitoring and controlling major system equipment in PRECorp's substations. PRECorp has invested in an extensive communications network and will leverage those investments to establish remote control capabilities across the distribution network. SCADA expansion to distribution network devices will improve the efficiency and effectiveness of PRECorp's wildfire operational response.

B. Wildlife Mitigation - APP Historical Development

Wildlife interactions with PRECorp's overhead power line equipment are a significant ignition source. PRECorp has a robust history of addressing wildlife-related outages (faults) through PRECorp's Avian Protection Plan (APP), which has evolved significantly since its inception.

PRECorp began collecting and reporting avian mortality data as early as 2001 and adopted its first voluntary Avian Protection Plan in 2005. The APP was subsequently updated in 2010 to incorporate lessons learned and to refine processes based on mortality data. This proactive approach positioned PRECorp among the early adopters of comprehensive wildlife protection strategies in the cooperative utility sector.

The APP was developed following the guidelines established by the U.S. Fish and Wildlife Service and the Avian Power Line Interaction Committee (APLIC), addressing three key motivations:

- Regulatory compliance with laws protecting birds
- Improved system reliability
- Enhanced community relations

C. APP Effectiveness and Evolution

PRECorp's APP has demonstrated significant effectiveness in reducing wildlife-related outages (faults) and plays an important role in reducing wildfire ignitions. Data analysis has shown a consistent downward trend in animal-caused outages since implementation, particularly for bird-related incidents. Transformer structures, which were identified as the most problematic infrastructure component for avian interactions, have been systematically addressed through PRECorp's retrofitting program.

The effectiveness of PRECorp's wildlife protection efforts is continuously monitored through:

- Tracking of wildlife-related outages and ignitions

- Documentation of avian mortalities
- Post-retrofitting audits to evaluate equipment performance

Based on field experience and performance data, PRECorp has continuously refined its approach to wildlife protection, including:

- Reviews and pilots of new technologies and equipment
- Upgraded designs for bushing covers
- Improved insulation practices for jumper wires
- Enhanced perch deterrents in sage grouse habitat areas
- Modified grounding practices to prevent phase-to-ground contacts

D. Hand-Wheel Bushing Cover Remediation Program

A significant component of PRECorp's wildlife mitigation effort involves the systematic removal of hand-wheel bushing covers from PRECorp's system. Through data analysis conducted as part of PRECorp's WFRMP, PRECorp identified transformer bushing covers as a risk for wildlife interactions that could be mitigated proactively.

Field inspections revealed that insects shelter under these covers, attracting small birds that attempt to access the insects as a food source. This creates a potential phase-to-ground contact point that can result in equipment failure, outages, and potential ignition sources.

PRECorp has integrated the identification and replacement of hand-wheel bushing covers into PRECorp's twelve-year pole inspection program. During detailed line inspections, transformer bushings are reviewed for their type and condition. Hand-wheel bushing covers are documented for replacement with improved alternatives.

This methodical approach ensures complete system remediation over a twelve-year cycle while optimizing operational efficiency by aligning the work with PRECorp's established inspection program. As of 2025, approximately 25% of identified hand-wheel bushing covers have been replaced, with replacement completion anticipated by 2036.

The APP continues to evolve as new materials, technologies, and wildlife protection strategies emerge, reinforcing PRECorp's commitment to reducing wildfire ignition risks while improving overall system reliability.

E. Electrical Connectors

Electrical connectors can be an ignition source if compromised by corrosion or loosening. When a compromised connection is subjected to high levels of current, often during electrical fault conditions, arcing can occur. PRECorp has embarked on three programs to address this potential ignition source, as summarized below.

- Engineering Standards - PRECorp is revising its standards for various connector types to ensure the material and connection type are optimal for each installation condition. Replacement of existing connectors will take place in coordination with other work over a twelve-year period.
- Infrared Imaging – UAS inspection included infrared (heat) imaging of suspect electrical connections. PRECorp technicians also use infrared imaging as part of the line inspection process. Infrared imaging can help identify a compromised electrical connection, however there are numerous factors that impact the effectiveness of this inspection method, and historically results have been mixed.
- "Anometer" Diagnostics - "Anometer", short for Anomaly Meter, is a software system that detects compromised electrical connections by leveraging PRECorp's Automated Metering Infrastructure (AMI) data. On a daily basis, Anometer evaluates voltage and power quality data that is reported by PRECorp's 27,000 meters. Anomalies are grouped geographically, and suspected faulty electrical connection points are identified. Power technicians are then dispatched to the suspect connection points for field evaluation and possible repair. Anometer was developed and continues to be refined by PRECorp's staff. The system has been featured at multiple electric utility conferences and was recognized by the HeroX crowdsourcing platform.

F. Evaluation and Potential Implementation of Other System Hardening Activities

PRECorp is exploring a systematic approach to hardening the overhead distribution system. This type of hardening involves engineering analysis (modeling) of existing powerlines to optimize infrastructure improvements. For example, an analysis may recommend improving a line's physical strength by adding guys and anchors or replacing selected poles with stronger ones. Limited pilot modeling studies have been completed on select sections of PRECorp's overhead distribution line.

PRECorp continues to evaluate protective coatings and pole wraps that improve the fire resistance of wood poles. In a typical year, PRECorp will replace approximately twenty wood poles while 2024 was an exceptional year, with over 400 poles requiring replacement due to wildfire damage. PRECorp has not yet determined an optimal/economic case for widespread use of these protective coatings and wraps.

6. Operational Response

PRECorp closely monitors weather conditions on a daily basis and alters normal operations when weather conditions indicate a heightened risk for wildfire ignition and wildfire escalation. PRECorp maintains detailed operational response standard operating and utilizes the following sources for quantifying fire weather impacts.

1. The National Weather Service (NWS\NOAA) with special attention given to red-flag warnings
2. Input from wildfire related agencies

PRECorp recognizes the critical role weather forecasting plays in system operations, engineering, and wildfire operational response. In order to improve the weather information available to PRECorp, in 2020 PRECorp partnered with “Tempest\Weatherflow” to install weather stations at most PRECorp substations. The network of weather stations in the PRECorp service territory has been further expanded by PRECorp members participating in a PRECorp program to provide the Tempest weather stations at a reduced cost.

A. Wildfire Season

The fire season is the season of elevated fire risk, often from mid-summer to early fall. The wildfire season is established (and ended) each year according to the judgement of PRECorp's VP of System Operations based on factors that indicate fire risk (due to weather) is elevated and is expected to remain elevated for an extended period.

During the wildfire season, PRECorp implements the following two operational measures according to SOPs:

1. Additional powerline patrols and precautions are taken before and after re-energizing faulted powerlines. When a power outage occurs, power may stay out longer while PRECorp personnel verify a wildfire ignition hazard does not exist prior to restoring electric service.
2. Fire protective settings (FPS) are implemented for protective equipment (circuit breakers) in areas with heightened wildfire risk (identified in section 3). Fire protective settings are more sensitive than normal and reduce fault current energy (heat). Fire protective settings reduce ignition risk; however more frequent and longer power outages may occur when fire protective settings are implemented.

B. Red Flag Days (Fire Weather)

During red flag warnings issued by the NWS, PRECorp implements additional operational measures according to detailed SOPs. Red Flag Warnings usually occur during the wildfire sea-

son, but they can occur at any time. During red flag warnings, the following two precautions are taken in addition to those listed under the wildfire season paragraph 6A.

1. Off-road travel and off-road field operations are reduced according to the judgement of field personnel.
2. Fire protective settings are implemented for overhead distribution powerline located in an NWS fire weather zone under a red flag warning. PRECorp monitors fire weather forecasting and evaluates other operational considerations when implementing wildfire protective settings. As conditions warrant PRECorp may enter into fire weather protected settings in advance of a red flag warning and remain in fire weather protective settings after a red flag warning has been lifted.

C. Fire Incident Response

PRECorp responds to wildfire incidents in the same manner as other emergent system operating conditions, such as power outages. PRECorp, together with PRECorp's industry partners (contractors, suppliers, etc.) has vast experience successfully responding to significant system disruptions and safely restoring electric service in an efficient manner. For example, in 2024, significant wildfires such as the Constitution, Flat Rock and House Draw wildfires consumed over 300,000 acres and 400 PRECorp poles. Over twenty miles of powerline were rebuilt, and power was restored to most customers in less than three days.

During wildland fires, PRECorp personnel, with assistance from PRECorp's system dispatch center, communicate with wildland fire incident managers. Fire incident managers direct PRECorp personnel to safely access PRECorp's facilities. Fire incident managers may request PRECorp to de-energize (lock out) distribution facilities in the vicinity of working fire crews and PRECorp employees are authorized to respond to such requests.

PRECorp maintains a Service Interruption Reporting Plan (SIRP), which is filed with and approved by the Wyoming Public Service Commission (PSC) as part of PRECorp's published service rules and regulations. The SIRP adheres to the PSC's Rules Chapter 3, Section 27 (outage reporting). Service interruptions that are attributable to wildfires or other activities of the WFRMP are recorded and reported to the PSC according to the SIRP.

PRECorp maintains legal access to lands where its powerlines are constructed and operated. This access is secured through easements and permits executed prior to construction and renewed as required by applicable laws and regulations. PRECorp's easement document has been updated multiple times over the years and as such different versions of the easement are in effect depending on the age of the line.

For private lands, easements are executed with the then-current landowner before construction begins and run with the land; current practice includes recording private easements within the respective county. On state lands, easements are granted under Wyoming Board of Land Commissioners' rules, which require detailed legal descriptions and periodic updates. Federal lands, including U.S. Forest Service, Bureau of Land Management, and Bureau of Reclamation, require grants or special use permits issued under their respective processes. Each entity may require specific documentation such as Operating and Maintenance plans, which may include stipulations for vegetation management, avian protection, fire protection, inspection schedules, and emergency response requirements.

In the event of wildfire that initiates or requires an electrical outage, PRECorp generally restores electrical service according to the following procedure; with appropriate communication to members, regulatory bodies, and other agencies throughout the restoration process:

1. Assessment – Lines and equipment are inspected for hazards and overall damage when safe to do so.
2. Repair - Lines and equipment are prioritized for re-energization based on scope of work needed, impacted services, and availability of resources.
3. Restoration – Lines, equipment, and services are energized in whole or in part as repair work is completed and it is safe to do so.
4. Review – Additional inspections and patrols are performed to determine if additional retirement or construction is required to restore power line and equipment to a normal condition.

7. Public Safety Power Shutoff (PSPS)

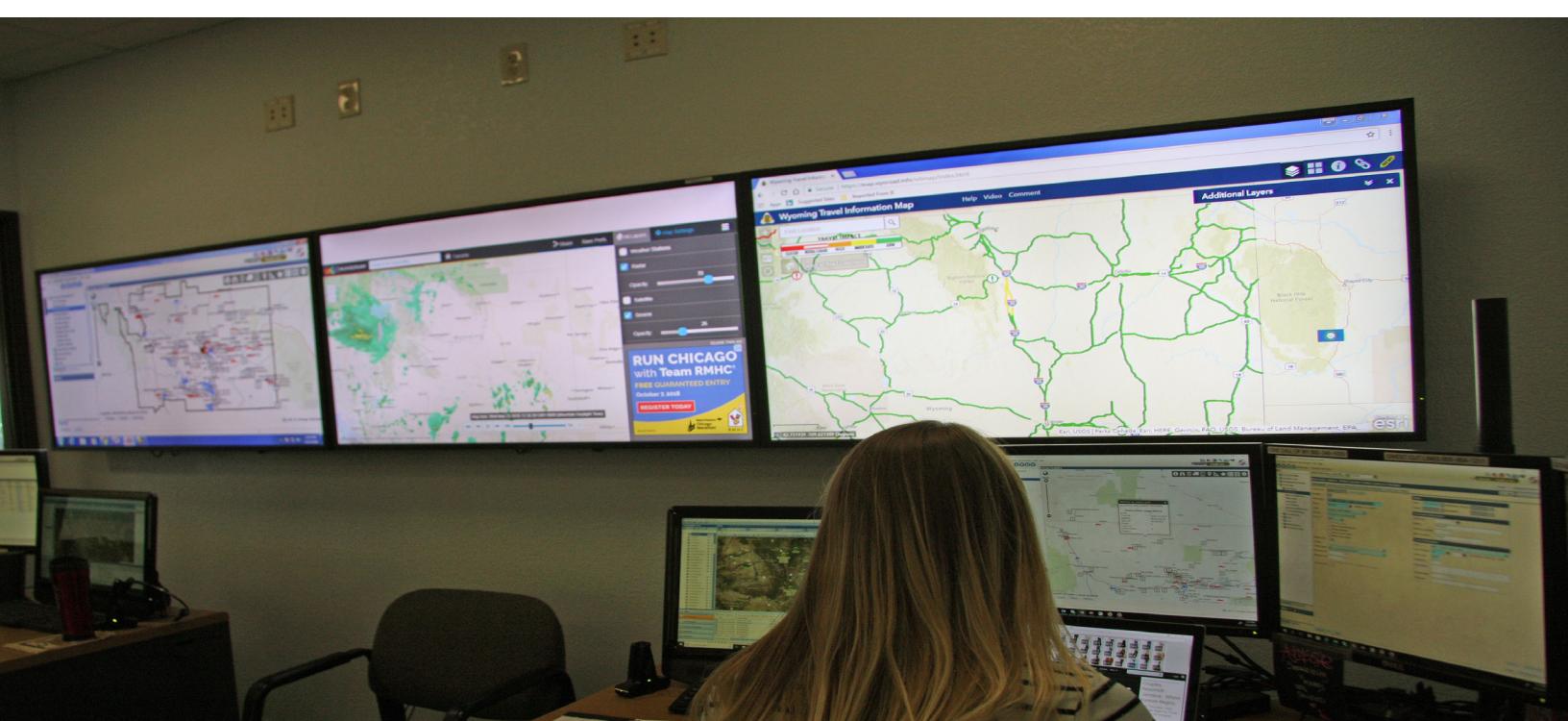
PRECorp has historically de-energized services and line sections when needed to provide public safety, usually at the request of community first responders (EMS) during accidents, fires, floods and other emergency situations. This includes de-energization of powerlines for the safety of wildland firefighters working in the vicinity of PRECorp's system. PRECorp's employees are empowered to de-energize (and lock, tag, and ground) line segments in these situations. These practices are in place for active fires encroaching on existing infrastructure and other potential public safety hazards.

Proactive de-energization of electric facilities, where a powerline is de-energized in anticipation of a fire or another emergent hazard exists, is known as a Public Safety Power Shutoff (PSPS). A PSPS is a temporary, last resort measure taken to reduce wildfire ignition potential during periods of high wind speeds, low humidity, and the presence of abundant severely dry fuels.

The potential impacts that de-energizing lines may have on the resilience of the remainder of PRECorp's transmission and distribution facilities is dependent on the specific lines or line sections that are de-energized. Normally loop-fed facilities may support continued electric service to PRECorp customers when limited sections of these looped facilities are de-energized. Radial-fed facilities will not provide for continued electric service to PRECorp customers located downstream of the de-energized line section.

PRECorp's distribution network is primarily radial fed, with limited loop feeding. Additionally, loop-fed portions may have limited load serving capacity and may require complicated switching operations to move normal feeder open points. Because loop-feeding is limited, in most cases all downstream customers will be without electric service when an upstream distribution line segment is de-energized. PRECorp knows the operation of the feeders (radial or loop-fed) and considers the resiliency impact of the individual lines when determining if a PSPS is warranted.

PRECorp recognizes that electric power underpins the workings of modern society and extended power outages, especially to critical infrastructure, can impact short and long-term public safety and well-being. PRECorp encourages all critical infrastructure owners and operators to provide for continued electric supply through installation of long-term (multiple day) backup power sources.


A PSPS may be well intended to reduce wildfire ignition potential but inadvertently make ongoing wildfire suppression, and other emergency responses more difficult. PRECorp encourages community planners, emergency response agencies, and critical infrastructure operators to carefully plan for loss of electrical service for extended periods. Such loss of electrical service may be due to a PSPS, but more likely will be the result of equipment failure, extreme storms, wildfire, or acts of sabotage.

When PRECorp assesses the need for a PSPS, numerous considerations are made that include the potential loss of water supply to fight wildfires due to loss of power at production wells and pumping facilities; negative impacts on emergency response and public safety due to disruptions to the internet and mobile phone service; loss of key community infrastructure and operational efficiency from power outages; negative impacts on medical facilities and members of the public needing powered medical equipment or refrigerated medication; traffic congestion from lack of traffic control devices or street lighting; congestion caused lengthen response times for emergency responders; negative economic impacts from local businesses that are forced to close during an outage; and the inability to open garage doors or motorized gates may lead to injuries\fatalities and/or delayed access\egress to\from various facilities.

As discussed in paragraph 6, PRECorp monitors weather conditions on a daily basis as part of PRECorp's standard operating procedures (SOPs). If warranted, PRECorp may implement a PSPS during periods of critical wildfire risk, either at PRECorp's discretion or at the request of a fire response agency(s) or community leadership.

PRECorp's Emergency Response Team (ERT) team will evaluate PSPS requests (internal or externally requested) and implement the PSPS if warranted and practical to do so. The event will be managed according to PRECorp's internal ERT procedures for various disaster and major hazard response. Prior to implementing a PSPS the ERT team will complete the following steps.

1. Fully define and clarify the PSPS request (impacted areas, duration, location(s), lock-out/tag-out and grounding requirements)
2. Determine if the PSPS area can be safely sectionalized (de-energized and electrically isolated) without impacts to areas outside the PSPS area.
3. Identify impacts to critical infrastructure (communications, water, EMS, hospitals, etc.).
4. Determine a re-energization plan and re-energization criteria.
5. Determine if the area considered for PSPS can be safely re-energized without impacts to areas outside the PSPS area.
6. Determine impacts to other utilities (electric and non-electric) and coordinate the PSPS with those impacted utilities.
7. Attempt to notify impacted members (customers) and stakeholders through manual and/or automated means as soon as practicable.
8. Notify the Wyoming Public Service Commission as soon as practicable.

8. Coordination with Wildfire Response Agencies

A draft of this plan has been provided to wildland fire response agencies including county fire departments, the Wyoming Department of Environmental Quality (DEQ), the US Forest Service (USFS), the Wyoming Rural Firefighters Association, and the Bureau of Land Management (BLM). Agency comments have been considered in preparing the final version of the plan.

Beginning in 2022, PRECorp has communicated with fire response agencies at least annually in order to (1) maintain current agency contact information, (2) improve incident communications (between PRECorp and the agency), (3) obtain wildland fire event data, (4) stay informed of partnership opportunities to lower wildland fire hazard risk, such as fuel management or vegetation management grants and programs; and (5) to offer wildfire response agencies electrical safety training and resources.

9. Public Communication

PRECorp engages with its members and communities to raise awareness of wildfire risks, utility safety, and to encourage the public to notify PRECorp when they become aware of wildfire hazards such as vegetation clearance issues.

PRECorp's WFRMP formal community outreach efforts are planned annually by PRECorp's executive staff and marketing communications specialist. The plan is developed using current cooperative communication standards, external guidance, internal reviews, and final implementation. The outreach plan is then incorporated into PRECorp's broader communication plans. PRECorp will provide formal communications with the general public approximately ten times throughout the year. The primary means of WFRMP community outreach are articles published in PRECorp's "Power Lines" power bill insert newsletter, and in the "Wyoming Rural Electric News (WREN)" magazine.

PRECorp may also communicate with the public regarding WFRMP through its website, telephone townhall meetings (also available via Facebook live stream), social media posts, PRECorp's podcast, YouTube videos, and general advertising such as print, radio, and bill-board messaging.

Prior to fire season each year, PRECorp communicates via one or more channels regarding its annual reliability and mitigation measures, tree trimming and safety, and its line inspection notice. During fire season each year, PRECorp communicates via one or more channels regarding red flag warnings, its avian protection plan, and one or another aspect of its wildfire mitigation plan.

10. Implementation, Financial Considerations, and Annual Reporting

A. Implementation

This plan was prepared by PRECorp's staff. PRECorp's VP of Operations and VP of Engineering and Technical Services are together responsible for developing, updating, and implementing the WFRMP.

A PRECorp stake holders group meets regularly to review and update fire incident data, suggest plan revisions, measure progress in meeting mitigation goals, and prepare fire mitigation related workplans and budgets.

B. Wildfire Prevention Financial Considerations

The initiatives outlined in this WFRMP necessitate a substantial investment. However, the efficiencies derived from these programs will alleviate rate pressures on members. The projected annual implementation costs for the various programs include both capital and operational expenditures, as detailed in the table on page 17 (Figure 5). Fluctuations in these expenditures are expected as the program progresses. These costs include project scoping and design as well as construction. Where possible, PRECorp's internal crews will complete field work, while contractors are engaged when workload necessitates external support.

PRECorp continues to see upward pressure on rates due to cost increases in most facets of the electric utility sector, including but not limited to labor and materials. Aside from potential rate increases to account for such cost increases, PRECorp does not anticipate a rate increase to cover costs detailed in PRECorp's WFRMP. PRECorp implemented its WFRMP and associated workplans in 2022 without a rate increase, and PRECorp has continued affecting the same without a rate increase to date.

PRECorp's WFRMP asset management, system hardening, and operational response activities expanded on long-standing maintenance and reliability programs at PRECorp. The majority of PRECorp's past and planned wildfire mitigation expenditures are investments in the cooperative to provide value to the membership. Asset management and system hardening expenses are expected to reduce outage frequency and duration, reduce outage response expense, and extend asset life. Operational response expenses may not have a corresponding return, however PRECorp is working to reduce operational response expenses through investment in communication and remote control of protective devices.

WFRMP Investment Forecast					
Program Component	2025	2026	2027	2028	
Aerial (drone) Inspections	\$ 50,000	\$ 150,000	\$ 105,000	\$ 90,000	
IVMS Data Collection	\$ 140,000	\$ 60,000	\$ 150,000	\$ 60,000	
Vegetation Management (trimming associated with WFRMP)	\$ 250,000	\$ 275,000	\$ 300,000	\$ 325,000	
<i>Sub Total Asset Management</i>	<i>\$ 440,000</i>	<i>\$ 485,000</i>	<i>\$ 555,000</i>	<i>\$ 475,000</i>	
Engineering and Design	\$ 40,000	\$ 100,000	\$ 75,000	\$ 60,000	
Equipment\Material Replacement	\$ 1,165,000	\$ 1,695,000	\$ 1,548,000	\$ 2,015,000	
System Protection Improvements	\$ 880,000	\$ 1,020,000	\$ 910,000	\$ 870,000	
<i>Sub Total System Hardening</i>	<i>\$ 2,085,000</i>	<i>\$ 2,815,000</i>	<i>\$ 2,533,000</i>	<i>\$ 2,945,000</i>	
Total (Asset Management, System Hardening)	\$ 2,525,000	\$ 3,300,000	\$ 3,088,000	\$ 3,420,000	

* Additional labor costs for operational support for additional outage response and protective equipment settings estimated at \$300k\yr

Figure 5. WFRMP Investment Forecast

C. Wildfire Liability Financial Considerations

The liability associated with wildfire could have an adverse effect on electric rates. Wyoming HB0192 is intended to limit this liability and improve the insurability of electric utilities.

PRECorp is insured by and is a member of the Federated Rural Electric Insurance Exchange (Federated), a cooperative serving electric cooperatives. For the time being, PRECorp has obtained adequate wildfire risk insurance from Federated without substantial insurance rate increases. This insurance is expected to be sufficient to pay for damages associated with a PRECorp ignited wildfire.

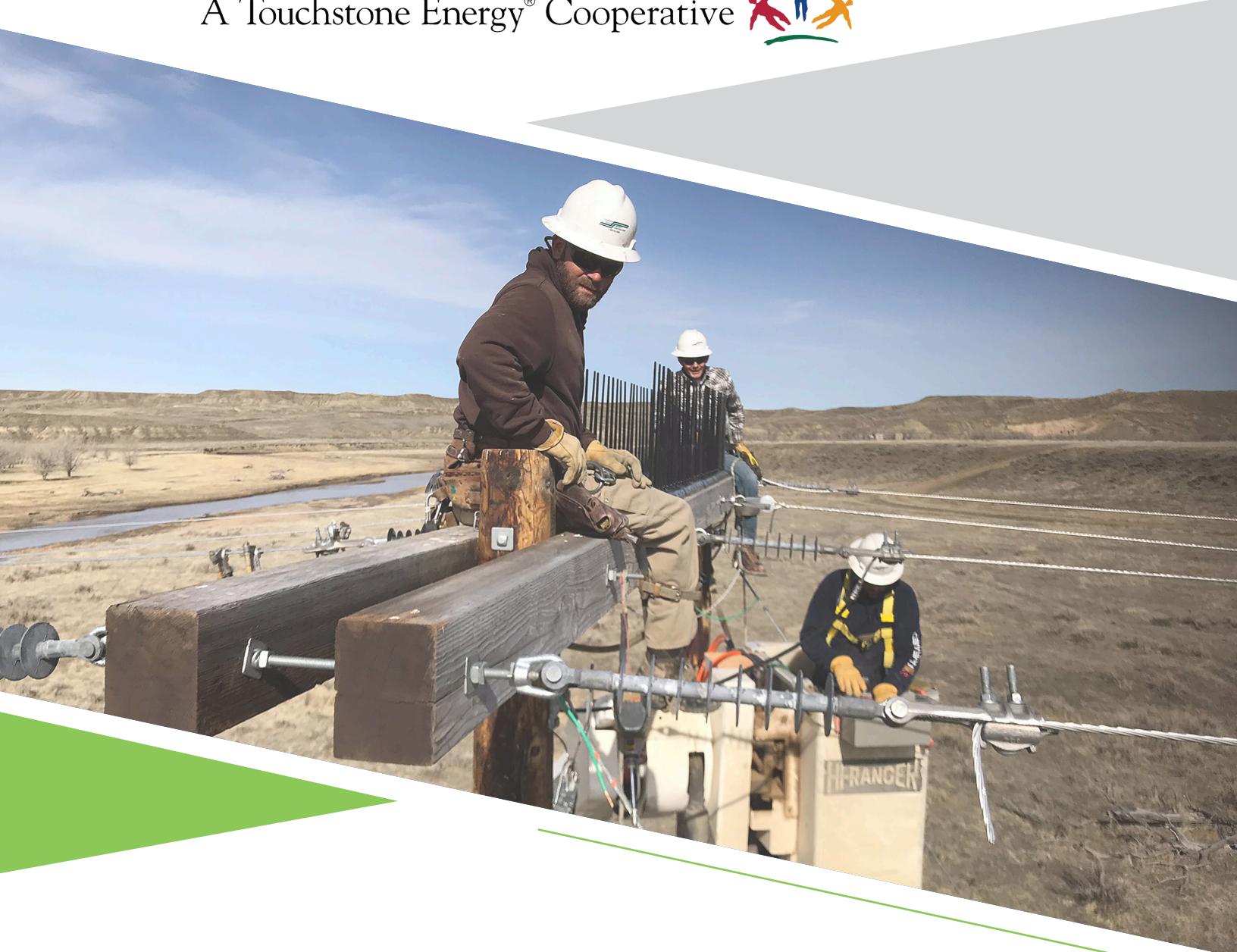
Insurance is not available to cover the loss of PRECorp infrastructure to wildfires. In most years, PRECorp's wildfire losses have been relatively modest. In 2024, PRECorp incurred significant losses, however those costs are expected to be offset by the Federal Emergency Management Administration (FEMA).

D. Annual Reporting

Beginning in 2026, PRECorp will file an annual report to the PSC before June 1 of each year detailing PRECorp's compliance with WFRMP.

11. Contact for Further Information

 Tim Velder
Marketing Communications
Specialist
timv@precorp.coop


 Quentin Rogers
VP of Engineering and
Technical Services
quentinr@precorp.coop

 Rich Halloran
VP of System Operations
richh@precorp.coop

**POWDER
RIVER**

**ENERGY
CORPORATION**

A Touchstone Energy® Cooperative

SUNDANCE – CORPORATE HEADQUARTERS
221 Main Street • P.O. Box 930 • Sundance, WY 82729
(800) 442-3630 Phone

GILLETTE
200 S. Garner Lake Road • Gillette, WY 82718
(800) 442-3630 Phone

SHERIDAN
1095 E. Brundage Lane • Sheridan, WY 82801
(800) 442-3630 Phone

MEMBER SERVICE:

1-800-442-3630

9 a.m. - Noon; 1 p.m. – 5 p.m. (Monday–Friday)

POWER OUT?

1-888-391-6220

24 hours/day

